https://www.linkedin.com/feed/update/urn:li:activity:6475308720208388096
TOTTEN-11. Proposed by Wolter Janous, Ursulinengimnasium, Insbruck,Austria.
(a) Let x, y, and z be positive real numbers such that $x+y+z=1$. Prove that

$$
\frac{8 \sqrt{3}}{9} \leq\left(\frac{1}{\sqrt{x}}-\sqrt{x}\right)\left(\frac{1}{\sqrt{y}}-\sqrt{y}\right)\left(\frac{1}{\sqrt{z}}-\sqrt{z}\right)
$$

(b) ${ }^{\star}$ Let $n \geq 2$ and let $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers such that $x_{1}+x_{2}+\ldots+x_{n}=1$. Prove or disprove that

$$
\left(\frac{n-1}{\sqrt{n}}\right)^{n} \leq \prod_{k=1}^{n}\left(\left(\frac{1}{\sqrt{x_{k}}}-\sqrt{x_{k}}\right)\right) .
$$

Solution by Arkady Alt, San Jose ,California, USA.

(a) Solution 1.(Reduction to geometric inequality).

Using notation $a:=1-x, b:=1-y, c:=1-z$ we obtain for the right hand side of original inequality following representation
$\left(\frac{1}{\sqrt{x}}-\sqrt{x}\right)\left(\frac{1}{\sqrt{y}}-\sqrt{y}\right)\left(\frac{1}{\sqrt{z}}-\sqrt{z}\right)=\frac{(1-x)(1-y)(1-z)}{\sqrt{x y z}}=\frac{a b c}{F}$,
where F is area of triangle determined by sides with lengths a, b, and c
and semiperimeter $s=1(a+b+c=2$ and for positive a, b, c holds inequalities $a<1 \Leftrightarrow a<b+c, b<1 \Leftrightarrow b<c+a, c<1 \Leftrightarrow c<a+b)$.
Thus, original inequality in such geometric interpretation and in homogeneous form is
(1) $\frac{8 \sqrt{3}}{9} \leq \frac{a b c}{s F}$.

Let R be circumradius of this triangle, then $\frac{a b c}{s F}=\frac{4 F R}{s F}=\frac{4 R}{s}$ and, therefore, (1) \Leftrightarrow
(2) $a+b+c \leq 3 \sqrt{3} R$.
(2) is well known inequality and can be proved, for example, by application

Sine-Theorm, in form of the folloving trigonometric inequality
(3) $\sin A+\sin B+\sin C \leq \frac{3 \sqrt{3}}{3}$
which immediately follows from application Jensen's Inequality
for concave down on $[0, \pi]$ function $\sin x$.
Solution 2.(Direct algebraic proof).
Let $p:=x y+y z+z x$ and $q:=x y z$ then original inequality in (a) becomes
(4) $\frac{8 \sqrt{3}}{9} \leq \frac{p-q}{\sqrt{q}}$.

Since $\frac{p-q}{\sqrt{q}}=\frac{p}{\sqrt{q}}-\sqrt{q}$ obviously decreasing in q on $(0, \infty)$ and
$3 p \leq 1\left(\Leftrightarrow 3(x y+y z+z x) \leq(x+y+z)^{2}\right)$,
$3 q \leq p^{2}\left(\Leftrightarrow 3 x y z(x+y+z) \leq(x y+y z+z x)^{2}\right)$
then $\frac{p-q}{\sqrt{q}} \geq \frac{p}{\sqrt{\frac{p^{2}}{3}}}-\sqrt{\frac{p^{2}}{3}}=\sqrt{3}-\frac{p}{\sqrt{3}}=\frac{3-p}{\sqrt{3}}$ and, therefore,
$\frac{p-q}{\sqrt{q}}-\frac{8 \sqrt{3}}{9}=\left(\frac{p-q}{\sqrt{q}}-\frac{3-p}{\sqrt{3}}\right)+\frac{3-p}{\sqrt{3}}-\frac{8 \sqrt{3}}{9}=$
$\left(\frac{p-q}{\sqrt{q}}-\frac{3-p}{\sqrt{3}}\right)+\frac{1-3 p}{3 \sqrt{3}} \geq 0$.
(b).

Inequality incorrect for $n=2$.
Indeed, since $x_{1}+x_{2}=1$ then $\frac{\left(1-x_{1}\right)\left(1-x_{2}\right)}{\sqrt{x_{1} x_{2}}}=\frac{x_{2} x_{1}}{\sqrt{x_{1} x_{2}}}=\sqrt{x_{1} x_{2}}$
and inequality in (b) becomes $\left(\frac{1}{\sqrt{2}}\right)^{2} \leq \frac{\left(1-x_{1}\right)\left(1-x_{2}\right)}{\sqrt{x_{1} x_{2}}} \Leftrightarrow \frac{1}{2} \leq \sqrt{x_{1} x_{2}}$.
But $\sqrt{x_{1} x_{2}} \leq \frac{x_{1}+x_{2}}{2}=\frac{1}{2}$.

